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The facies of the fossiliferous Quilon Limestone in SW India is described for the first
time in detail at the Padappakkara-type locality. Facies (fossiliferous, micrite-rich, bio-
turbated sediment with intercalated sand pockets) and faunal composition (epiphytic
foraminifers, seagrass feeding Smaragdia gastropods, bioimmuration of celleporiform
bryozoan colonies) indicate a seagrass environment. The large discoidal archaiasin fora-
minifer Pseudotaberina malabarica, in particular, is considered as a proxy for seagrass
communities. Recent seagrasses have their centre of generic richness in the Indo-Pacific
where they cover wide areas in the tidal and shallow sub-tidal zones. However, their geo-
logical record is only fragmentary and their palaeobiogeographic distribution has a big
stratigraphical gap in the Miocene Western Indo-Pacific region. The described nanno-
plankton flora and planktonic foraminifers from the Quilon Formation demonstrate that
the deposition of the studied seagrass bed occurred in nannoplankton biozone NN3.
This timing suggests formation during the closure of the Tethyan Seaway. The Quilon
Limestone is thus an early Western Indo-Pacific seagrass bed and an important step in
reconstructing the history of seagrass communities. h Quilon Formation, Pseudotaberina
malabarica, seagrass facies, Burdigalian, Indo-Pacific.
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Seagrasses are the only angiosperms that managed
marine life (Hemminga & Duarte 2000). At present-
day, they reach their greatest diversity in the Indo-
Pacific ocean, where they cover extensive areas in the
intertidal and shallow sub-tidal zones (Hoeksema
2007). Together with mangroves and coral reefs, such
seagrass meadows are part of the coastal marine eco-
system and carry out important ecosystem services
such as sediment stabilization, filtering of coastal run-
off, cycling of nutrients and global gases. Since they
provide food sources and highly structured refuges for
a number of algae, invertebrates and vertebrates, sea-
grass habitats are the sites of high benthic biodiversity
of coastal areas (Dorenbusch et al. 2006; Orth et al.
2006; Unsworth et al. 2008).

Seagrasses originated during the Late Cretaceous in
the Tethys Seaway (Ivany et al. 1990) and present-day
seagrass ecosystems include the coastal areas of all
continents except Antarctica (Den Hartog 1970; Bra-
sier 1975a; Eva 1980). Because the calcareous skeletons
of many seagrass dwellers contribute significantly to
the sediment, seagrass meadows became substantial
places of carbonate production in the Cenozoic. Even

though the preservation of fossil seagrass bodies is
exceptional, these skeletal associations are used for the
identification of seagrass beds in the geological past
(e.g. Brasier 1975a; Eva 1980; Ivany et al. 1990; Bea-
vington-Penney et al. 2004; Moisette et al. 2007).
However, considering these skeletal associations as
indicators of fossil seagrass beds is problematic
because most organisms that benefit from the seagrass
occur also in a wide range of other shallow marine
environments (e.g. Haunold et al. 1997).

Herein, we describe a Burdigalian benthic assem-
blage representing a seagrass habitat from the Quilon
Limestone (Kerala Basin, SW India). The fossiliferous
limestone facies is unique for the entire SW Indian
coast and its rich fauna (foraminifers, gastropods, biv-
alves, corals, echinoids, crabs, ostracods, bryozoans,
serpulids and shark teeth) was used for palaeobiogeo-
graphic reconstructions and stratigraphic correlations
(Eames 1950; Jacob & Sastri 1951; Dey 1961; Verma
1977; Sahni & Mitra 1980; Mehrotra 1982; Khosla &
Nagori 1989; Padmalal & Seralathan 1991; Harzhauser
et al. 2007, 2009). However, due to deep reaching
tropical weathering, the Quilon Limestone is only
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locally exposed in small outcrops at the base of sea
cliffs or currently available from material dug out of
wells and building excavations (Dey 1961; Menon
1967a; Narayanan et al. 2007). Accordingly, strati-
graphical and architectural relationships are unclear
and the existing depositional model is cursory. It
assumes that deposition took place on an open mar-
ine shelf with local coral reef occurrences in settings
shallower than 20 m proximal to the coast (Menon
1967a; Raha & Sinha-Roy 1982; Narayanan et al.
2007). This study focuses on the stratigraphical and
environmental interpretation of the limestone facies
at the Padappakkara-type locality to improve the
depositional model. Calcareous nannoplankton and
planktonic foraminifers, reported for the first time
from the Quilon Formation, confirm its Burdigalian
age.

Geography and geological setting

The studied locality is in the southern part of the
onshore Kerala Basin at the base of sea cliffs extending
into Ashtamudi Lake (N 08�58¢36¢¢, E 076�38¢08¢¢;
Fig. 1). This place is part of Padappakkara village,
5.4 km west–northwest of Kundara, and locally
known as ‘Channa Kodi’. It corresponds to the out-
crop studied by Dey (1961) and Menon (1967a, b)
and is the type locality of the Quilon Limestone.

Kerala Basin is the southern sub-basin of the peri-
cratonic Konkan–Kerala Basin on the Western Indian

passive continental margin (Fig. 1). The basin extends
�600 km from north to south and covers an area of
about 580 000 km2. It is separated from the northerly
Konkan Basin by the Tellicherry Arch basement high
and bordered by steep escarpments against the up to
2.695 m high Western Ghats in the east. To the west,
the basin continues into deep-waters to the Chargos–
Laccadive Ridge (Fig. 1; Shankar et al. 2004; Campa-
nile et al. 2008).

The Cenozoic sedimentary succession in the
onshore part of the Kerala Basin is dominated by silici-
clastic sediments with interbedded lignite seams. Ele-
vation and denudation of the Western Ghats at the
rift shoulder was the source for siliciclastics (Campa-
nile et al. 2008). Ostracod faunas and palynofloras
from these deposits document deposition in marginal
marine brackish lagoons as well as brackish and fresh-
water swamps (Rao & Ramanujam 1975; Rao 1995).
Exceptional is the Lower–Middle Miocene mixed silici-
clastic–carbonatic Quilon Formation, which extends
between Edava in the south and Alappuzha in the
north (Narayanan et al. 2007). The Quilon Formation
is part of the Warkalli Group and interbedded
between siliciclastics of the underlying Mayyanad
Formation (Lower Miocene) and the overlying Am-
balapuzha Formation (Miocene–Pliocene; Vaidyanad-
han & Ramakrishnan 2008). It comprises at least two
horizons of fossiliferous limestone with marine fauna
(Menon 1967a). The lower limestone horizon is char-
acterised by colonial corals, whereas the upper lime-
stone horizon represents a Pseudotaberina malabarica

Fig. 1. Location of Channa Kodi locality (asterisk) in the Kerala–Konkan Basin.
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facies, which is well-developed at the coastal cliffs of
Ashtamudi Lake at Padappakkara (Fig. 1).

Channa Kodi section

The total thickness of Channa Kodi section (Fig. 2) is
12 m. At its base occurs an at least 0.3-m thick deposit
of yellow, coarse-grained, poorly sorted carbonate
sand with subordinate-rounded quartz grains and det-
ritic glaucony (bed 1). The sediment is slightly lithified
and skeletal components are typically broken and
abraded. It contains a very diverse benthic foramini-
feral fauna (Table 1). Miliolids (such as Pseudotaberi-
na malabarica, Peneroplis planatus and Austrorillina
howchini) are most abundant but strongly corroded.
Lepidosemicyclina thecideaeformis and Operculina are
also frequent and in a poor state of preservation. In
contrast, planktonic foraminifers are rare but well-
preserved. Aragonitic-preserved molluscs are also
abundant. Among larger gastropod taxa, the strombid
Persististrombus daviesi (Fig. 3A4) dominates along
with Xenophora. Bed 1 contains high numbers of the
colloniid Bothropoma (Fig. 3A1), the solariellid Pagoda-
trochus (Fig. 3A2), the trochid Clanculus, the neritid
Smaragdia (Fig. 3A3) and the chilodontid Perrinia
(Fig. 3A5). A diverse scaliolid and dialid assemblage
with Scaliola, Finella and Clathrofenella is also present.

Corbulids and Glycymeris quilonensis are the most
abundant bivalves. Echinoids (Cidaroida indet.,
Clyperasteroida indet., Spatangoida indet.), serpulids,
ostracods, bryozoans, ascidian spicules (Fig. 4O) and
coralline red algae also occur, as well as well-preserved
calcareous nannoplankton (Fig. 4). Besides the high
abundance of Umbilicosphaera jafarii (Fig. 4F1, H1,
I1, J, K), the nannoplankton assemblage contains
common Coronocyclus nitescens (Fig. 4C, D, H2, I2),
Cyclicargolithus floridanus (Fig. 4F2), Discoaster de-
flandrei (Fig. 4G) and Reticulofenestra minuta
(Fig. 4E). Braarudosphaera bigelowii, Calcidiscus leptop-
orus, Coccolithus pelagicus, Helicosphaera carteri, Reti-
culofenestra gelida, Sphenolithus belemnos (Fig. 4L–N),
Sphenolithus moriformis and Tetralithoides symeonidesii
are very rare.

Bed 2 is 1.1 m thick and consists of grey to rust-col-
oured, poorly sorted quartz sand with clay pebbles,
plant debris and lignite fragments. It shows a slight
fining upward trend, from coarse- to medium-grained
sand.

This sand is overlain by a 0.4-m thick, massive fos-
siliferous limestone (bed 3), which has a bluish-grey
(fresh) to rusty (weathered) colour. In the literature,
this bed is referred to as Quilon Limestone (Dey 1961;
Menon 1967a, b). The well-lithified limestone bed is a
poorly sorted, bioclastic Pseudotaberina floatstone
(Fig. 5A). The matrix is a packsone (Fig. 5B, C) and

Fig. 2. Lithological log and field aspect of the Quilon Limestone at the Channa Kodi type locality.
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contains peloids, scattered quartz and glauconite
grains. The bioclasts are dominated by foraminifers
(>90% of total skeletal grains; Fig. 5B, C, E). Aside
from large Pseudotaberina malabarica (Ø 1.5 cm;
Fig. 3B) and Austrotrillina howchini, smaller porcella-
neous miliolids with triloculine and quinqueloculine
chamber arrangements are mass-occurring (>80% of
total foraminifers; Fig. 5). They are associated with
small rotaliid foraminifers (Fig. 5B) and Operculina.
The mollusc fauna is poorly preserved within the
limestones.

Minute gastropods such as the small limpet Calypt-
raea dunni and tiny infaunal lucinid bivalves (often
articulated) occur in masses; large moulds of Persisti-
strombus daviesi are frequent. Serpulids (Fig. 5C), bry-
ozoans and echinoderm fragments (asteroid plates
and cidaroid spines) also contribute to the Quilon
Limestone fauna. Bryozoans are represented by erect
delicate branching (Fig. 5B) and erect bilaminar
branching adeonoid (cf. Adeonellopsis) colonies as
well as encrusting celleporiform taxa. Some cellepori-
form colonies have a central tube-like mould
(Fig. 3C). The sediment is intensely bioturbated
(Fig. 5D). Some Thallassinoides burrows are filled up

with foraminiferal–mollusc rudstone. Sand pockets
(mollusc–foraminiferal grainstone) with sharp ero-
sional base are interbedded in the Pseudotaberina
floatstone (Fig. 5D, E). The carbonate sand is domi-
nated by miliolids and molluscs (Fig. 5D). Miogypsi-
nids, echinoderm and bryozoan fragments are also
present (Fig. 5E).

The top of the section is represented by a pedogeni-
cally altered sand unit (>1 m thick, bed 4) grading
into 10-m thick laterite.

Depositional environment

The composition of the highly diverse benthic forami-
niferal fauna in the carbonate sand at the base of
Channa Kodi section (Table 1) is typical for a shallow
coastal ⁄ inner-shelf system (Murray 2006). Seagrass
vegetation is argued by the high abundance of milio-
lids including epiphytic taxa such as Pseuudotaberina
malabarica, Peneroplis planatus and Austrotrillina
(Brasier 1975b; Eva 1980; Bassi et al. 2007; James &
Bone 2007; Renema 2008). Among gastropods, the
high abundance of Bothropoma, Pagodatrochus,

Table 1. Foraminiferal assemblage in the calcareous sand of bed 1 in Channa Kodi section.

Planktonic foraminifers
Globigerina eamesi Blow, Globigerina leroyi Blow & Banner, Globigerina cf. officinalis Subbotina, Globigerina cf. ouachitaensis Howe &

Wallace, Globigerina praebulloides Blow, Globigerina senilis Bandy, Globigerinella regularis d’Orbigny, Globigerinoides primordius (Blow &
Banner), Globigerinoides parawoodi Keller, Globigerinoides subquadratus Brönnimann, Globigerinoides trilobus (Reuss), Globigerinoides cf.
subsacculifer Cita, Premoli Silva & Rossi, Globigerinoides altiaperturus Bolli, Paragloborotalia acrostoma (Wezel)

Larger benthic foraminifers
Pseudotaberina malabarica (Carter), Austrotrillina howchini (Schlumberger), Borelis schlumbergeri (Reichel), Sphaerogypsina globulus

(Reuss), Operculina complanata (Defrance) – group, Operculina discoidalis (d’Orbigny) – group, Amphistegina vulgaris d’Orbigny,
Lepidosemicyclina thecideaeformis (Rutten), Nephrolepidina chavarana Jacob & Sastri, Nephrolepidina sp., Miogypsina cf. globulina
(Michelotti), Miogypsina cf. nipponica Matsumaru

Smaller benthic foraminifers
1. Agglutinated

Clavulina angularis d’Orbigny, Clavulina nodosaria d’Orbigny, Pseudogaudryina mayeriana (d’Orbigny), Textularia cf. aegyptica Said,
Textularia pseudogramen Chapman & Parr, Textularia mariae d’Orbigny

2. Miliolid
Articulina alticostata Cushman, Cycloforina cf. dorsicostata (Venglinski), Cycloforina contorta (d’Orbigny), Cycloforina reticulata (Karrer),

Lachlanella spp., Lachlanella undosa (Karrer), Peneroplis planatus (Fichtel & Moll), Pseudomassilina sp., Pseudotriloculina consobrina
(d’Orbigny), Pseudotriloculina inflata (d’Orbigny), Pseudotriloculina cf. microdon (Reuss), Pseudotriloculina cf. philippinensis (Cushman),
Pseudotriloculina reversa (d’Orbigny), Pyrgo clypeata (d’Orbigny), Pyrgo lunula (d’Orbigny), Quinqueloculina cf. buchiana d’Orbigny,
Quinqueloculina cuvieriana d’Orbigny, Quinqueloculina cf. transylvaniae Karrer, Quinqueloculina vulgaris d’Orbigny, Sigmoilopsis minuta
(Collins), Siphonaperta agglutinans (d’Orbigny), Siphonaperta mediterranensis (Bogdanowich), Spiroloculina cf. attenuata Cushman &
Todd, Triloculina affinis d’Orbigny, Triloculina terquemiana (Brady), Varidentella cf. pseudocostata (Venglinsky)

3. hyaline
Acervulina mabahethi (Said), Allassoida virgula (Brady), Alliatinella sp., Ammonia cf. inflata (Seguenza), Angulogerina cf. angulosa

(Williamson), Anomalinella rostrata (Brady), Anomalinoides globulosus (Chapman & Parr), Asterigerina carinata d’Orbigny,
Asterigerinata mamilla (Williamson), Bolivina spp., Buccella granulata (Di Napoli), Buchnerina milletti (Magerel), Cibicides mahabeti
Said, Cibicidoides spp., Conorbella pulvinata (Brady), Discorbia globospiralis Sellier de Civrieux, Elphidiella dollfusi (Cushman), Elphidiella
heteropora (Egger), Elphidiella minuta (Reuss), Elphidiella cf. subnodosa (Roemer), Elphidium angulatum (Egger), Elphidium cf.
articulatum (d’Orbigny), Elphidium craticulatum (Fichtel & Moll), Elphidium striatopunctatum (Fichtel & Moll), Eoeponidella sp.,
Fissurina globosa Bornemann, Glabratella sp., Glandulina sp., Hanazawaia cf. boueana (d’Orbigny), Hanzawaia elegans (Parker, Jones &
Brady), Hanzawaia nipponica Asano, Lobatula lobatula (Walker & Jacob), Neoconorbina terquemi (Rzehak), Nonion commune
(d’Orbigny), Nonion cf. depressulum (Walker & Jacob), Nonion cf. elongatum (d’Orbigny), Nonion cf. germanicum (Ehrenberg),
Nonionoides grateloupi (d’Orbigny), Pararotalia armata (d’Orbigny), Planorbulina mediterranensis (d’Orbigny), Planorbulinella sp.,
Porosononion sp., Pseudobrizalina cf. simpsoni (Herron-Allen & Earland), Pygmaeoseistron tubospina (Matthes), Reussella aculeata
Cushman, Rotorbinella umbonata Sellier de Civrieux, Rotorbis auberi (d’Orbigny), Sagrinella sp., Trochulina dimidiata (Parker & Jones),
Virgulopsis sp.
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Smaragdia and Perrinia (Fig. 3A1–A3, A5) and their
association with strombids (Fig. 3A4) indicate sea-
grass vegetation (Stoner & Waite 1991; Rueda et al.
2008; Zuschin et al. 2009). The corrosion of miliolid
foraminiferal tests is interpreted by Leonard-Pingel
(2005) as a result of root-etching and exposure to
carbonic acids that may have been produced
through decomposition of organic matter in a sea-
grass meadow. However, the low mud content as
well as the strong abrasion and fragmentation of
most skeletal components in bed 1 indicate rework-
ing and deposition in a high-energy environment
outside a seagrass meadow such as beach, tidal
channel or intertidal sand flat (Parsons & Brett
1991; Beavington-Penney et al. 2004; Short 2005;
James & Bone 2007). Therefore, such fossil epiphytic
faunal assemblages often reflect concentrations of
skeletons with similar hydrodynamic properties
rather than biocoenosis (Davaud & Septfontaine
1995).

Heavier and denser bioclastic particles are trans-
ported as bed load over short distances or reworked in
place whereas lighter and more porous particles are

transported as suspension load far away from their
biotope. As a consequence of this differential hydrody-
namic behaviour, allochthonous microfossils often
remain well-preserved (e.g. calcareous nannoplankton,
planktonic foraminifers) whereas autochthonous ones
may be deeply abraded (e.g. miliolids, larger forami-
nifera; Davaud & Septfontaine 1995). A high-energy
nearshore environment is also inferred from mud
pebbles and lignite clasts in the overlying quartz sand
(bed 2) reflecting coastal erosion (Menon 1967a;
Knight 2005).

Also, for the Pseudotaberina malabarica floatstone
facies in bed 3 (Fig. 5), seagrass vegetation is indicated
by the mass occurrence of Pseudotaberina malabarica
(Fig. 3B), Austrotrillina howchini (Fig. 5B–D) and
other miliolids (>90% of total skeletal grains).
Additional evidence for seagrass is tube-like bioimmu-
ration of celleporiform bryozoan colonies (Fig. 3C;
Cigliano et al. 2006). The high micrite content of this
facies (Fig. 5A–C) points to seagrass sedimentation in
place because the dense canopy of a seagrass meadow
baffles fine mud and detritus and the extensive rhi-
zome system fixes the fine fraction (Brasier 1975a,b;

A B

C

Fig. 3. Biotic evidence for seagrass. A, seagrass dwelling gastropods: 1a = Bothropoma sp., 1b = operculum of Bothropoma sp., 2 = Pagoda-
trochus sp., 3 = Smaragdia sp., 4a, b = Persististrombus daviesi Dey, 5 = Perrinia sp. B, Pseudotaberina malabaric (Carter). These large dis-
coidal archaiasin foraminifers lived attached to seagrass blades and are the dominant faunal element in the Quilon Limestone. C,
celleporiform bryozoan colony. The inner tube-like cavity indicates encrustation of an organic stem.
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Petta & Gerhard 1977; Jones et al. 1994). Sand pockets
(Fig. 5D) probably originate from storm blowouts,
which caused erosion (Fig. 5E), winnowing and infill-
ing of open, deep-excavated burrows (Wanless 1981;
Wanless et al. 1995). A further attribute of seagrass
meadows is a high organic content of the sediment. It
favours the proliferation of small infaunal suspension-
and deposit-feeding molluscs (Brasier 1975a; Beaving-
ton-Penney et al. 2004) and is displayed in the Quilon
Limestone by the high abundance of small articulated
lucinoids and minute gastropods.

Stratigraphy

Biostratigraphy

Pseudotaberina malabarica (Fig. 3B) is regarded as
Middle Miocene marker and has been recorded from
the Letter Stages Tf1 and Tf2 (Burdigalian–Serravalian;
Jauri & Khare 1990; Renema 2007, 2008); Hottinger
(2005) even refers to an Upper Miocene occurrence.

Consistently, the mollusc fauna of Channa Kodi sec-
tion shows striking affinities with the Burdigalian fau-
nas of Kutch in NW India (Eames 1950; Sahni & Sastry
1958; Dey 1961; Verma 1977; Harzhauser et al. 2009).

The newly reported planktonic foraminiferal assem-
blage consists of Globigerinoides altiaperturus, Gs.
immaturus and Gs. primordius, which are characteris-
tics of the Burdigalian planktonic foraminifera zone
N5 ⁄ M2 (Fig. 6; Berggren et al. 1995). Based on the
occurrence of Sphenolithus belemnos (Fig. 4L–N), nan-
noplankton zone NN3 is indicated for the Quilon For-
mation at Padappakkara (Fig. 6; Martini 1971).

Sequence stratigraphy

Miocene carbonates are reported from all basins of
the southwestern continental margin of India (i.e.
Bombay Basin, Konkan Basin, Kerala Basin) and their
formation has been linked to higher sea level and a
drier and warmer climate in the Middle Miocene
(Campanile et al. 2008). The succession from tidal
sand flat ⁄ beach deposits to seagrass sediments in

A B C

E

I J

K

O

NML

H
G

D F

Fig. 4. Nannoplankton. A, B, Coccolithus pelagicus (Wallich) Schiller. C, D, H2, I2. Coronocyclus nitescens (Kamptner) Bramlette & Wilcoxon.
E, Reticulofenestra minuta Roth. F1, H1, I1, J, K, Umbilicosphaera jafarii Mueller. F2, Cyclicargolithus floridanus (Roth & Hay) Bukry. G, Disco-
aster deflandrei Bramlette & Riedel. L–N, Sphenolithus belemnos Bramlette & Wilcoxon. O, ascidian spicule.
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Channa Kodi section records increasing water depth.
In agreement with this interpretation, Narayanan
et al. (2007) concluded transgressive conditions from
increasing d13C values up-section in the Quilon

Formation. This was the case in the upper part of
NN3 during the third-order transgression that fol-
lowed the Bur 3 sea level lowstand (Fig. 6). This third-
order sea level rise was amplified by the higher

A

B

D

C E

Fig. 5. Facies. A, B, the Quilon Limestone is a bioclastic Pseudotaberina floatstone (A) with quartz sand bearing packstone matrix (B, C); one
square on the graphic scale is 1 cm. B, C, E, the fauna of the Quilon Limestone is dominated by Pseudotaberina (P), Austrotrillina howchini
(Au) and molluscs (M). Small rotaliid foraminifers (R), Miogypsina (Mi), bryozoans (B), echinoderms (E) and serpulids (S) are associated. D,
E, the occurrence of grainstone and rudstone in sandpockets is the result of storm blowouts. Later the sediment became homogenized through
burrowing activity (D). Truncated Pseudotaberina malabarica tests at the base of sandpockets (circle in E) indicate an erosional contact.
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amplitude sea level rise prior to the Middle Miocene
Climate Optimum at around 15 Ma (Fig. 6).

Miocene seagrass biogeography in
the Western Indo-Pacific and
adjacent regions

The Western Indo-Pacific is a biogeographical region
covering the tropical waters of the western and central
portion of the Indian Ocean, including Africa’s east
coast, the Red Sea, Gulf of Aden, Persian Gulf, Ara-
bian Sea, Bay of Bengal and Andaman Sea (Spalding
et al. 2007). The origin of the Western Indo-Pacific
was due to the collision of Africa and Eurasia and the
stepwise closure of the marine connection between
the Eastern and Western Tethys. This process had
already started during the Late Oligocene and was
completed in the Burdigalian with the development of
the so-called ‘Gomphotherium Landbridge’ (Adams
et al. 1983; Rögl 1998). The disconnection prohibited
migrations of shallow marine biota (e.g. molluscs, cor-
als, echinoderms, benthic foraminifers; Harzhauser
et al. 2007). In Channa Kodi section (Fig. 2), this is
reflected by the lack of Western Tethyan elements in
the highly diverse gastropod fauna (Dey 1961).

DNA divergence time estimates of seagrass species,
the pantropical expansion of certain foraminifers such
as Sorites, Amphisorus, Marginopora and Peneroplis, as
well as the evolution of seahorses suggest that sea-
grasses propagated in the Indo-Pacific region during

the Miocene (Brasier 1975a; Les et al. 2003; Teske &
Beheregaray 2009). Miocene seagrasses and seagrass-
associated faunas are reported from the tropical Cen-
tral Indo-Pacific (Miocene – Laurent & Laurent 1926;
Middle Miocene – Boudhager-Fadel & Wilson 2000;
Wilson 2005; Burdigalian–Langhian – Ehrenberg et al.
2006) and temperate Australasian regions (sensu Spal-
ding et al. 2007; Early to Middle Miocene – Lukasik
et al. 2000; Collins et al. 2006). In the Western
Indo-Pacific, the evidence of seagrasses from this time
interval is, however, vague. Low-relief carbonate
build-ups from the Early Miocene Batu Raja Forma-
tion (Aquitanian–Burdigalian, planktonic foramini-
feral zone N5–6) in the South Sumatra Basin are
interpreted as possible seagrass or algae mudbanks
(Longman & Beddoes 1985; Longman et al. 1987).
Their fauna is characterized by planktonic foramini-
fers, larger benthic foraminifers (Eulepidina), flat platy
corals and branching Porites (Longman et al. 1987),
which are, however, not restricted to seagrass mead-
ows. In the Makran area (Iran), Burdigalian coral reefs
were developed locally within areas of grain-supported
foraminiferal limestones of a non-reefal character,
which are interpreted as seagrass flats based on the
foraminiferal assemblage (McCall et al. 1994).
Although this fauna resembles the herein studied
fauna (Table 1), the Makran fauna consists only of
rare individuals of epiphytic soritids (Archaias). The
reported benthic foraminifers (Miogypsina: dominant;
miliolids, Austrotrillina howchini, Borelis melo, Lepido-
cyclina: rare) occur in a variety of shallow marine

Fig. 6. Early and Middle Miocene stratigraphy after Gradstein et al. (2004) with third-order sequence stratigraphy of Hardenbol et al. (1998)
and oxygen isotope stratigraphy of Abreu et al. (1998). These isotope records are a rough reflection of temperature and the sea level; PF:
planktonic foraminiferal biozones, CNP: nannoplankton biozones.

8 Reuter et al. LETHAIA 10.1111/j.1502-3931.2010.00226.x



settings (including seagrass habitats; Murray 2006;
Vaziri-Moghaddam et al. 2006).

Therefore, we interpret the fauna as reworked sea-
grass assemblage in which soritids were depleted due
to a different hydrodynamic behaviour (Davaud &
Septfontaine 1995). Thus, we conclude that the Qui-
lon Limestone is the first evidence for a Miocene in
place seagrass ecosystem in the entire Western Indo-
Pacific region.

Pseudotaberina malabarica is the characteristic fossil
of the Quilon Limestone (Fig. 5). But even though it
has an epiphytic mode of life (Renema 2008), this spe-
cies was never interpreted to thrive in a seagrass set-
ting. Pseudotaberina malabarica is only reported from
miliolid-rich carbonate facies in very shallow inner-
shelf settings from the Indo-Pacific and West Pacific
regions (Carter 1853; Cole 1957; Banner & Highton
1989; Jauri & Khare 1990; Wonders & Adams 1991;
Kalantari 1992; Renema 2008). In all sites (including
Channa Kodi), Pseudotaberina malabarica always
occurs in high numbers and typically together with
Austrotrillina and miogypsinids. Owing to these con-
spicuous affinities and our observations in Channa
Kodi section, Pseudotaberina malabarica had narrow
ecological constraints and therefore their mass occur-
rence can be used as a proxy for the identification of
fossil seagrass communities. Lepidocyclinids (e.g. Lepi-
dosemicyclina thecideaeformis) are also often reported
in association with Pseudotaberina malabarica (e.g.
Cole 1957; Banner & Highton 1989; Jauri & Khare
1990; Wonders & Adams 1991; Kalantari 1992;
Renema 2008). Lepidocyclinids, however, inhabited
low-lit and ⁄ or deep water settings, which are not
favourable for seagrass (e.g. Pedley 1998; Beavington-
Penney & Racey 2004). Their association with Pseudo-
taberina malabarica may display shading by seagrass
(Renema et al. 2001). In Channa Kodi section, how-
ever, lepidocyclinids were associated with Pseudotabe-
rina only in the calcareous sand of bed 1. As stated
above, this sand is interpreted as reworked sediment
and the Pseudotaberina–Lepidosemicyclina assemblage
represents no biocoenosis in contrast to that of the
Quilon Limestone.

Conclusions

Facies analysis and biotic content of the Burdigalian
Quilon Limestone at its type locality in onshore Kerala
Basin (SW India) indicate that the sediment was
deposited in a seagrass meadow. Calcareous nanno-
plankton and planktonic foraminifers, here described
first from the Quilon Formation, indicate that seagrass
vegetation was initiated during nannoplankton bio-
zone NN3 through a marine ingression into coastal

brackish lagoons and swamps probably caused by the
third-order sea level rise after the Bur 3 sea level low-
stand (Hardenbol et al. 1998) and amplified by the
higher ranking sea level rise at the onset of the Middle
Miocene global warming. Biostratigraphical data and
the composition of the gastropod fauna show that the
sedimentary succession formed after the total break-
down of faunal relationships between Eastern and
Western Tethys and soon after the installation of the
Gomphotherium Landbridge. This makes the Quilon
Limestone the earliest documented Western Indo-
Pacific seagrass bed and fills a time gap in the evolution
of seagrass environments. Pseudotaberina malabarica is
considered a proxy for the recognition of Miocene sea-
grass environments in the Indo-Pacific region.
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